3. Integral Calculus

Definition of Integration

Integration is the mathematical process of finding the accumulation of a quantity. It is the inverse operation of differentiation. The integral of a function represents the total accumulation over an interval, such as area under a curve or total distance traveled.

There are two main types of integrals:

  • Indefinite Integral: Represents a family of functions and includes a constant of integrationCCC.
  • Definite Integral: Evaluates the net accumulation over a specific interval[a,b][a, b][a,b].

2. Indefinite and Definite Integrals

a) Indefinite Integral

An indefinite integral finds a general function whose derivative is the given function. It is written as:

f(x)dx=F(x)+C\int f(x) \,dx = F(x) + C

where

CC

C is the constant of integration.

Example:

2xdx=x2+C\int 2x \,dx = x^2 + C

b) Definite Integral

A definite integral calculates the total accumulation over an interval

[a,b][a, b]

[a,b] and is written as:

abf(x)dx=F(b)F(a)\int_{a}^{b} f(x) \,dx = F(b) - F(a)

where

F(x)F(x)

F(x) is the antiderivative of

f(x)f(x)

f(x).

Example:

13(x2)dx=[x33]13\int_{1}^{3} (x^2) \,dx = \left[ \frac{x^3}{3} \right]_1^3

=333133=27313=263= \frac{3^3}{3} - \frac{1^3}{3} = \frac{27}{3} - \frac{1}{3} = \frac{26}{3}


3. Techniques of Integration

a) Substitution Method

Used when an integral contains a composite function. We set

uu

u as an inner function to simplify integration.

Example:

xex2dx\int x e^{x^2} \,dx

xex2dx

Let

u=x2u = x^2

, so

du=2xdxdu = 2x \,dx

.
Rewriting the integral:

12eudu=12eu+C=12ex2+C\frac{1}{2} \int e^u \,du = \frac{1}{2} e^u + C = \frac{1}{2} e^{x^2} + C

b) Integration by Parts

Used for integrating the product of two functions, based on:

udv=uvvdu\int u \,dv = uv - \int v \,du

Example:

xlnxdx\int x \ln x \,dx

xlnxdx

Let

u=lnxu = \ln x

, so

du=1xdxdu = \frac{1}{x}dx

, and let

dv=xdxdv = xdx

, so

v=x22v = \frac{x^2}{2}

.
Applying the formula:

xlnxdx=x22lnxx221xdx\int x \ln x \,dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \frac{1}{x} dx

=x22lnxx2dx= \frac{x^2}{2} \ln x - \int \frac{x}{2} dx

=x22lnxx24+C= \frac{x^2}{2} \ln x - \frac{x^2}{4} + C